
Eur. Phys. J. D 23, 285–290 (2003)
DOI: 10.1140/epjd/e2003-00042-8 THE EUROPEAN

PHYSICAL JOURNAL D

Photorefractive ac-enhanced nonlinear response of sillenites:
Low- and high-contrast effects

O. Filippov1,a, K.H. Ringhofer1,†, and B.I. Sturman2

1 Physics Department of the University, 49069 Osnabrück, Germany
2 International Institute for Nonlinear Studies, Koptyg Ave 1, 630090, Novosibirsk, Russia

Received 13 September 2002 / Received in final form 27 December 2002
Published online 11 February 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. Analytically and numerically we investigate the dependence of the first Fourier harmonics of
the space-charge field, induced in an AC-biased sillenite crystal by a light-interference pattern, on the
light contrast m. It is shown that within the whole contrast range, 0 < m < 1, these dependences are
controlled by the only scalar parameter – the space-charge wave quality factor Q. In the low-contrast limit,
m � Q−2, this factor defines the degree of enhancement of the nonlinear response while for larger contrasts
it characterizes strong saturation effects. The data obtained are compared with the results of the previous
studies of the AC-response. The possibilities of experimental detection of predicted dependences and their
possible implications are discussed.

PACS. 42.65.Ky Frequency conversion; harmonic generation, including higher-order
harmonic generation – 78.20.Bh Theory, models, and numerical simulation

1 Introduction

The idea of AC-enhancement of the insufficiently high
nonlinear response of fast photorefractive crystals (the
sillenites Bi12SiO20, Bi12TiO20, Bi12GeO20, the semicon-
ductors GaAs, GaP, etc.) goes back to the 80s [1,2]. It
was found first in 1985 [3] that employment of a quickly
oscillating electric AC-field is able to increase the light-
induced space-charge field within the low-contrast limit
and to make the photorefractive response non-local, i.e.,
gradient-like. Such a non-local response is convenient for
many practical purposes.

In the subsequent years the AC-enhancement tech-
nique had become the subject of numerous experimen-
tal and theoretical studies. It was found, in particu-
lar, that a square-wave shape of the AC-field provides
the best enhancement [4], that the low-contrast range,
where the fundamental component of the space-charge
field grows linearly with m is very narrow, and that the
enhancement property is closely related to the presence of
weakly damped, low-frequency eigenmodes – space-charge
waves [5] – and to the generation of spatial subharmon-
ics [1]. The large-contrast AC-effects in the sillenites were
investigated in [6,7].

During the last decade, large applied fields
(up to 50 kV/cm [8,9]) have become available for
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AC-experiments. Furthermore the region of large light
contrast has become important in connection with the
soliton propagation problem [10]. Lastly, a number of
applications of fast photorefractive materials, such as
detection of weak signals, are relevant to the high-contrast
effects [11–13]. It was found recently under rather general
conditions that the space-charge field induced in a fast
AC-biased crystal by a finite light beam possesses a
discontinuity [14,15]. The width of this discontinuity lies
in the sub-µm range, it is much smaller than the typical
scale of light-intensity variations.

Below, after ten years, we revisit the problem of high-
contrast AC-response of fast photorefractive crystals. In
contrast to [6,7] we do not restrict ourselves to the funda-
mental component of the space-charge field. We account
for the discontinuity of the field profile and work in the
terms providing generality of the results obtained. Fi-
nally, we address the problems related to measurements
of the spatial harmonics and applications of the nonlinear
AC-response.

It should be noted that apart from the AC-technique
for enhancement of the photorefractive response the so-
called DC-technique [1,16] (which requires application of
a DC electric field and an introduction of a frequency de-
tuning between the light beams) was also the subject of
many studies. The problem of high-contrast DC-response
was considered in [17,18]. It is quite different in physics
from the problem in question.
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Fig. 1. Geometrical diagram of an
AC experiment.

Lastly, we mention that the high-contrast effects are
important also for cubic InP crystals [29,30]. However,
the charge transport processes are essentially different in
this case from the processes relevant to the sillenites.

2 Basic relations

We assume that two light waves propagate symmetrically
to the z-axis in a fast photorefractive crystal and a square-
wave AC-field is applied parallel to the x-axis, see Fig-
ure 1. The vectorial complex amplitudes of the light waves
we denote a1,2. They can change with z because of the lin-
ear (field-induced birefringence and optical activity) and
nonlinear (energy exchange) effects. The sum |a1|2+ |a1|2,
which is proportional to the total intensity, does not de-
pend on z. From now on we normalize the vectorial am-
plitudes in such a way that this sum equals to unity.

The spatially modulated part of the intensity distribu-
tion, Ĩ, produced by these two waves and normalized to
the sum of their intensities is

Ĩ = (a∗
2 · a1) exp(iKx) + c.c., (1)

where K = |k1 − k2| is the absolute value of the light
wavevector difference (often called the grating vector),
x is the fringe coordinate measured in the direction of
the vector k1 − k2, and c.c. stands for complex conjuga-
tion. The contrast of the interference light pattern, m, is
given by m = 2|a∗

2 · a1|. The presence of the scalar prod-
uct in equation (1) and in the definition of m is impor-
tant for optically isotropic cubic crystals. The polarization
states of light waves change here because of nonlinear cou-
pling and this change cannot be generally separated from
the intensity changes [19,20]. The contrast m reaches its
maximum value (unity) only for equal intensities, |a1|2 =
|a2|2 = 1/2, and identical polarization states, a1 ‖ a2. As
clear from equation (1), the intensity distribution Ĩ can
be rewritten in the real form, Ĩ = m cos(Kx + ϕ) with
ϕ = arg(a∗

2 · a1). Generally, the phase ϕ depends on the
propagation coordinate z because of coupling effects and
this dependence is important for description of the vecto-
rial 2W-coupling.

The light-induced space-charge field Esc is directed
along the x-axis and can be presented in the form

Esc(x) = E1 ei(Kx+ϕ) + E2 e2i(Kx+ϕ) + . . . + c. c., (2)

The amplitudes E1, E2, . . . are complex functions of m;
the form of these functions depends on the charge trans-
port mechanism. The fundamental amplitude E1 is of
prime importance for photorefractive effects because it

characterizes the rate of mutual Bragg diffraction of the
recording beams and, therefore, the coupling strength dur-
ing 2W-coupling.

In the case under study the charge separation oc-
curs under an alternating external AC-field. This field
is assumed to be parallel to the x-axis, to change pe-
riodically its sign, Eex(t) = ±E0, and have an os-
cillation period much smaller than the photorefractive
response time. These conditions provide an optimum
AC-enhancement [4]. In experiment, the amplitude E0 is
often larger than (or comparable with) 10 kV/cm. Diffu-
sion charge separation is negligible in this case.

The high speed of the AC-oscillations allows to employ
an averaging procedure to find the static profile Esc(x).
This procedure was used first within the low contrast
approximation (and within the conventional one-species
model of charge transfer) to find the first spatial har-
monic E1 [3]. The main result of this paper we present
in a form which is convenient for what follows,

E1/E0 � −i m Q/2 , (3)

where the real quantity Q = Q(K, E0) is the quality factor
for the space-charge wave with wavevector K [5],

Q =
(

E0

Eq
+

Em

E0
+

Ed

E0

)−1

, (4)

Eq, Em, and Ed are the conventional characteristic
fields [1,2],

Eq =
qNt

εε0K
, Em =

1
Kµτ

, Ed =
KkbT

q
, (5)

q is the elementary charge, Nt the effective trap con-
centration, εε0 the static dielectric constant, µτ the
mobility-lifetime product for photo-excited electrons, kb

the Boltzman constant, and T the absolute temperature.
The maximum value of the function Q(K, E0) is

(qNtµτ/4εε0)1/2 [5]. The fast photorefractive crystals are
distinguished by large values of the µτ -product, here
Qmax � 1. With the values Nt = 2 × 1016 cm−3, µτ =
3 × 10−7 cm2/V, and εε0 = 50, representative for the sil-
lenites, we have Qmax � 8.

The most important features of the dependence
Q(K, E0) can be described as follows. For E0 consid-
erably larger than (NtkbT/εε0)1/2 (which is typically of
the order of a few kV/cm) the diffusion contribution
to Q [the last term in Eq. (4)] can be neglected. In this
case, the optimum value of the grating vector, Kopt �
E−1

0 (qNt/εε0µτ)1/2 and the corresponding peak value
of Q(K) is not far from Qmax. This is illustrated by Fig-
ure 2 for the above representative material parameters.
Note that for E0 ∼ 101 kV/cm the optimum value of K
corresponds to half-angle θ between the incident light
beams (see Fig. 1) of the order of a few degrees. The
larger E0, the wider (in Λ) is the region of large Q. The
presence of the AC-enhancement manifests itself clearly
in experiments on light-induced scattering in the sillen-
ites [20–22]: the strongest scattering angles correspond
to Kopt.
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Fig. 2. Dependence Q(Λ) for εε0 = 50, Nt = 2 × 1016 cm−3,
µτ = 3× 10−7 cm2/V, and several values of E0. The curves 1,
2, 3, 4, and 5 correspond to E0 = 4, 8, 12, 16 and 20 kV/cm,
respectively. The dashed line shows the value of Qmax for the
accepted material parameters.

The introduced quality factor has also an apparently
different implication. It defines the threshold of the so-
called subharmonic generation in the sillenites, which cor-
responds to the parametric instability against excitation
of weakly damped space-charge waves [5,23]. Lastly we
mention that the quality factor can be directly measured
in experiment [24].

Let us return to equation (3) valid in the low con-
trast approximation. The presence of the imaginary unit i
means that the photorefractive response is non-local, i.e.,
the light and field fringes are shifted to each other by a
quarter of a period.

Since the amplitude of the space-charge field related
to the first Fourier harmonic is 2|E1|, we have E

(1)
sc /E0 �

mQ. Hence already at m ≈ Q−1 � 1, the space-charge
field becomes comparable with the applied field. The lin-
ear approximation (ignoring the material nonlinearity) is
clearly broken here. This situation differs strongly from
that typical for slow ferroelectrics, which is caused by the
difference in values of the lifetime-mobility product for
photo-excited charge carriers [5].

Recently, the procedure of averaging over the fast AC-
oscillations was applied to the nonlinear case (an arbitrary
light contrast) to obtain a simple differential equation for
the normalized space-charge field e = Esc(x)/E0 in the
diffusion-free limit E0 � (NtkbT/εε0)1/2. This ordinary
second-order equation reads [14],[

(e2 − 1) (1 + Ĩ)
1 + ls ex

]
x

=
e (1 + Ĩ)

l0
, (6)

where the subscript x denotes the x-differentiation, l0 =
µτE0 is the characteristic drift length, and ls = εε0E0/qNt

the characteristic saturation length. For representative pa-
rameters of the sillenites and E0 = 20 kV/cm we have the

estimates, l0 ≈ 50 µm, ls ≈ 0.4 µm. Correspondingly, the
grating vector K has to range between l−1

0 and l−1
s to meet

the requirement Q � 1.
Within the linear approximation in Ĩ we have from

here l0lsexx − e = l0Ĩx and for the first harmonic E1 we
return immediately to equation (3). In the general case,
an even intensity distribution Ĩ(x) produces an odd dis-
tribution e(x).

The distinctive feature of equation (6) is the presence
of the smallest characteristic length ls before the deriva-
tive ex in the denominator. As soon as the nonlinear (in m)
terms become important, this feature causes a highly pe-
culiar behavior of the field profile e(x). Namely, this pro-
file cannot be smooth on the scale of the grating period
Λ = 2π/K, it has to include a discontinuity of e(x). If
we assume the opposite, the term lsex can be neglected;
then equation (6) becomes a first-order differential equa-
tion which cannot possess any periodic solution for e.
Therefore the solution of equation (6) must possess dis-
continuities. Their width can be estimated as ≈ ls. Note
that the presence of a small coefficient before the highest
(second) derivative is typical, e.g., of Burgers equations
which describes shock waves in hydrodynamics [25].

3 Results

Recently, equation (6) was applied to the beam prop-
agation problem [15]. Below we use it to describe the
characteristics of light-induced gratings arising during
2W-mixing. Correspondingly, the intensity distribution Ĩ
was chosen in the form Ĩ = m cos(Kx).

Apart from the low-contrast limit, equation (6) can-
not be solved analytically. To solve it numerically, we
have used the standard procedure bvp4c of the pack-
age MATLAB 6.0. Starting from m = 0, we increased
the contrast with the increment 5 × 10−4 using the so-
lution obtained in the kth step as the “hypothesis” for
the next (k + 1)th step. The steps in x have been chosen
automatically to ensure the relative accuracy 10−3. With
Pentium 4 of 2 GHz, the calculations performed were not
time-consuming.

Figure 3 shows the main tendencies in the change of
the space-charge field profile with increasing contrast for
Q ≈ 6. One sees that a sine-like profile occurs only for
m � 0.05. With increasing m, the discontinuity (situated
at the intensity maximum) quickly progresses; far from
the discontinuity the function e(x) experiences a strong
saturation and approaches the square-wave form e = ±1.
The light-induced field never exceeds the applied field,
|Esc| < E0. It is curious that a strong steepening of the
field profile at the intensity minima (x/Λ � ±0.5) occurs
only when m is approaching unity.

Since the function e(x) is odd, all its Fourier harmonics
are imaginary,

en(m) ≡ En(m)
E0

= −2i

1/2∫
0

e(ξ, m) sin(2πnξ) dξ, (7)
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Fig. 3. The profile e(x) for the accepted material parameters,
E0 = 13 kV/cm, Λ = 30 µm, (Q � 6.2), and several values
of the contrast. The curves 1, 2, 3, 4, 5, and 6 correspond to
m = 0.05, 0.1, 0.3, 0.6, 0.9, and 1.0, respectively.

with ξ = x/Λ. This means, in particularly, that the fun-
damental component of Esc(x) is π/2-shifted with respect
to the intensity distribution for any value of the contrast,
i.e., the photorefractive AC-response is always non-local.
Using the approximation of a square-wave profile of e(x)
for m = 1, we obtain the following estimate of the limit
values of the spatial harmonics: en(1) � −2i/nπ for odd
numbers (n = 1, 3, ...) and en(1) = 0 for even numbers,
(n = 2, 4, ...). For the fundamental component we expect,
therefore, the limit value |e1(m = 1)| � 2/π � 0.64.

For what follows it is useful to represent the depen-
dence e1(m) ≡ E1(m)/E0 in the form

e1 = −(imQ/2)F1 , (8)

where F1(m) is a dimensional function with a unit ini-
tial value, F1(0) = 1. While using equation (8) for the
description of the vectorial coupling [20,22], it is impor-
tant to keep the phase factor exp(iϕ) = 2(a∗

2 · a1)/m in
equation (2).

The solid curve in Figure 4 shows the result of our
numerical calculation of the function |e1| = QmF1(m)/2
on the basis of equation (6); it corresponds to Q � 6.2.
This curve, which is remarkable, can be considered as
a characteristic one. Fairly wide changes of the param-
eters Nt, µτ , E0, and Λ do not affect it seriously, pro-
vided the corresponding values of the quality factor Q lie
within the range (5−7) which is most interesting for ex-
periment. The vertical bars in Figure 4 show the spread
of the results obtained for Nt = (1−6) × 1016 cm−3,
µτ = (0.7−4.2)×10−7 cm2/V, E0 = (12−30) kV/cm, and
Λ = (10−50) µm. With increasing contrast this spread is
decreasing. At m = 1 we have |e1| � 0.62, which agrees
well with the above made analytic estimate. The close
proximity of different curves means (i) that the quality fac-
tor Q determines the photorefractive nonlinear response
in the whole range of the light contrast m and (ii) that the
dependence of this response on Q is saturated for Q � 1.
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Fig. 4. Dependence of |e1| on the light contrast for Q = 6.2.
The dotted curve corresponds to equation (9).
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(in 10−7 cm2/V), Nt (in 1016 cm−3), Λ (in µm), and E0

(in kV/cm) for the curves 1–8 are the following: 1 – (4.0, 1.63,
2.37, 40, 18); 2 – (6.0, 2.51, 2.38, 10, 18); 3 – (6.2, 4.23, 1.06,
20, 12); 4 – (6.4, 7.68, 6.6, 15, 30); 5 – (6.6, 1.48, 4.23, 25, 24);
6 – (6.8, 4.03, 1.44, 35, 14); 7 – (7.0, 3.34, 2,94, 50, 20); 8 –
(9.0, 3.12, 2.94, 25, 20).

Instead of the contrast m it is often useful to employ
the pump intensity ratio β. These quantities are coupled
by the relation m = 2

√
β/(1 + β) with β ranging from 1

to ∞. Figure 5 shows the dependence |e1(β)|/m(β) =
Q F (β) in a logarithmic scale for 8 different combinations
µτ , Nt, E0, and Λ. For the curves 2–7 the quality factor
ranges from 6 to 7, whereas the curves 1 and 6 are plotted
for considerably smaller and bigger values of Q, respec-
tively. For very large intensity ratios, log10(β) > (4−5)
(the low-contrast limit), each curve is characterized by a
plateau on the level of Q/2; all the curves are clearly sep-
arated here. In the opposite case, log10(β) � 2 (m � 0.2),
the curves with Q ≥ 6 practically coincide.

It is of interest also to compare the results of our
numerical calculations with the expression used in [6,7]
for fitting the numerical results and experimental data.
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In our terms, this fit is equivalent to the representation of
the function e1(m) in the form

e1 = (−iQ/2a)[1 − exp(−am)] exp(m) , (9)

where a is a fitting parameter. The dotted curve in Fig-
ure 4 shows the best fit of our numerical results, it
corresponds to a = 2.15 Q. One sees that the fitting func-
tion given by equation (8) reproduces fairly well the main
features of the photorefractive AC-response. At the same
time, the difference between the solid and dotted lines is
noticeable for m ≈ 0.15.

As seen from Figures 4 and 5, the whole contrast range
can roughly be separated into two regions. The region
0 < m � 0.02 (β � 104) corresponds to the linear the-
ory [3]. Here the fundamental amplitude E1 grows rapidly
with the contrast and the rate of spatial amplification of
weak signals is extremely high, up to 102 cm−1. In the
second region, 0.1 � m < 1, the growth of E1(m) is
strongly saturated. This region is more appropriate for
grating recording than for the spatial amplification pur-
poses.

It should be underlined that the results exhibited are
related to the case Q � (3−5) which is our prime interest.
While the quality factor approaches unity, the effects of
AC-enhancement fade quickly.

Apart from the fundamental harmonic e1, responsi-
ble for beam-coupling effects, the first higher harmonics
e2 = E2/E0 and e3 = E3/E0 are of practical interest.
These harmonics can be measured with the help of aux-
iliary Bragg-matched light beams, they are important for
characterization purposes. Since the function e(x) is odd,
all the higher Fourier harmonics are imaginary. Figures 6a
and 6b show the dependences |e2(m)| and |e3(m)|, re-
spectively calculated for the same parameters as the solid
curve of Figure 4. The function |e2(m)| peaks at m � 0.5
and turns (as expected) to zero at m = 1. This depen-
dence corresponds to the formation of the step-like field
profile with increasing m, see Figure 3. Note that the ini-
tial (quadratic) interval of |e2(m)| is extremely narrow,
m � 0.02, and the maximum expected value of |E(2)

sc | is
about 0.2E0. The spread of the curve in Figure 6a (shown
by the vertical bars) is noticeably larger than that in Fig-
ure 4, especially in the region of relatively large m. The
dependence e3(m) shown in Figure 6b looks quite differ-
ent. It tends first to saturate at m � 0.2 but experiences
then a remarkable growth with m approaching unity. The
maximum value of E

(3)
sc is about 0.4E0. Both the depen-

dences of Figure 6 can be considered as the fingerprints of
the AC-response in the sillenites.

4 Discussion

Let us comment first on the relationship between our re-
sults and the theoretical results presented in [6,7]. First of
all we note that there is no serious contradiction between
them. But there are, nevertheless, some differences. Par-
tially, the parameters used in these papers correspond to
the case E0 � (NtkbT/εε0)1/2, which is of minor interest
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Fig. 6. Dependence of the second (a) and third (b) spatial
subharmonics on the contrast m. The assumptions made are
the same as for Figure 4.

and lies outside the field of applicability of equation (6).
Simulation of the time development of the charge den-
sity on the basis of the conventional one-species model
restricted the possibilities of numerical experiments. In
particular, the states attained were not fully stationary
yet. It is not quite clear also whether the coordinate step
used was always considerably smaller than the saturation
length ls. The mentioned circumstances can be the reason
for minor quantitative distinctions in the cases where the
approaches used can be compared.

Introduction of the quality factor Q has allowed us to
represent the data on the fundamental harmonic in a fairly
simple manner. This is especially true for the case Q � 1
which has become topical during the last years. The form
of our results allows for their incorporation into the theory
of vectorial beam coupling [20]. Lastly, we provide the
reader with new data on the higher spatial harmonics E2,3.

Several implications of the AC-response considered are
also worth of discussion. The first one is how to mea-
sure the dependences En(m) experimentally. In our opin-
ion, the standard coupling geometries (the longitudinal,
transverse, and diagonal), where the recording light beams
propagate near the [110] (or [1̄10]) axis, are not very useful
for this purpose. The point is the coupling effects (involv-
ing also the polarization changes) can hardly be excluded
even for relatively thin (∼1 mm) samples appropriate for
the application of AC-fields. The most useful one seems
to be the geometry used in [23,24] where the recording
beams propagate nearby the [001] axis and testing Bragg-
matched beams propagate nearby [110]. In this case,
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the recorded space-charge field is not distorted by cou-
pling effects and the minor remaining theoretical problem
is to take into account the influence of optical activity and
the AC-induced birefringence on the measured diffraction
efficiency [26]. A similar technique was used to measure
the higher harmonics of Esc induced in the case of the
co-called resonant DC-enhancement of the photorefractive
response [17,18].

The next aspect is the influence of the m-dependence
of the fundamental harmonic on the characteristics of two-
beam coupling in the sillenites. It is important to realize
that this coupling is essentially vectorial, i.e., it cannot be
reduced to the scalar one in the general case. The aforesaid
is especially true with respect to the cases where the op-
tical activity is essentially involved (which is, e.g., always
the case for BSO crystals). The use of the formulae of the
scalar theory for fitting of the experimental dependences
can result here in misleading conclusions. On the other
hand, the use of the vectorial coupling theory (incorpo-
rating the polarization degrees of freedom) can result in
qualitatively new polarization effects.

One of examples and applications of such effects is the
linear detection of weak oscillating signals by means of
a polarization filtering [27,28]. This new effect is feasible
exclusively due to the vectorial character of beam coupling
in cubic crystals. Its efficiency is expected to gain because
of saturation of the dependence E1(m) in the region of
large contrasts. The influence of coupling effects on the
polarization linear detection is still an open problem.

One of the apparent manifestations of the AC-
enhanced beam coupling is the light-induced (nonlinear)
scattering in the sillenites [20–22]. Application of the vec-
torial theory to calculation of the scattering characteristics
was based always on the expression (3) which is restricted
to the low-contrast limit. The effects of saturation, that
are clearly seen in experiment, were missing in these con-
siderations. Development of the vectorial theory beyond
the low-contrast limit is also a challenge which stems from
experiment.

5 Conclusions

Using the governing equation for the space-charge field
induced during 2W-coupling under an AC-field in the sil-
lenites, we have analyzed numerically the dependences of
the first Fourier harmonics, E1,2,3 on the light contrast
ranging from 0 to 1. We found out that these rather pecu-
liar dependences are strongly controlled by the only scalar
parameter – the quality (enhancement) factor Q. Compar-
ison with the results of the previous studies is performed
and the possibility for experimental detection of the the-
oretical predictions are discussed.
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